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A B S T R A C T

Cascade and threshold models are widely used to predict information diffusion in social networks, yet their
characterization of networks as static and monoplex limit their ability to accurately predict how information
propagates in dynamic, multiplex social environments. Using data from a peer-led HIV prevention intervention
for homeless youth, we determine whether manipulating the baseline social network by (1) adding ties observed
at later time points, and (2) accounting for alternative relational contexts improves each model’s predictive
accuracy. Results show that the addition of new ties improves the performance of both models, while sub-
stituting the context of interaction yields only minor improvements.

1. Introduction

For the more than 35,000 unaccompanied youth experiencing
homelessness on a given night in the United States (U.S. Department of
Housing and Urban Development, 2019), HIV and other sexual health
risks are significant concerns (Gangamma et al., 2008; Rew et al.,
2005). Whereas the prevalence of HIV among the general population of
young people in the United States is about 0.2 % (Sweeney et al., 1995),
the rate of infection among homeless youth far exceeds this in many
urban areas, with reports ranging from 2% to more than 10 % (Marshall
et al., 2010). This disparity can best be explained by differences in
behavior and circumstances. Relative to stably housed youth, homeless
youth are more likely to engage in behaviors that put them at increased
HIV risk, such as condomless sex (Solorio et al., 2008), partner con-
currency (Halcón and Lifson, 2004), survival sex (Tyler, 2009), and
substance use (Kipke et al., 1997), and are more likely to experience
correlates of these behaviors like childhood maltreatment and sexual
victimization (Melander and Tyler, 2010).

The idea that peers (or peer networks) play a critical role in these
risk behaviors is well established (Ennett et al., 1999; Rice et al.,
2012a,b; Rice et al., 2007) and has informed purposeful efforts to (re)-
appropriate the influence of peers toward increasing HIV prevention

engagement among homeless youth (Arnold and Rotheram-Borus,
2009; Kennedy et al., 2016; Rice et al., 2012a,b). We refer to these
efforts as peer-led network interventions, which have a history of use
for HIV prevention (Kelly et al., 1991; Latkin et al., 2003; Schneider
et al., 2015; Young et al., 2017, 2013) And, in a community naturally
suspicious of adults and external experts (Coates and McKenzie-Mohr,
2010), peer leader approaches that prioritize endogenous sources of
knowledge and trust are desirable for linking homeless youth to HIV-
related healthcare (Yadav et al., 2018).

However, successful implementation of peer-led HIV prevention
interventions for homeless youth requires an understanding of how
information is likely to diffuse in their peer networks and which net-
work members are optimally positioned to maximize the spread of in-
formation to the greatest number of network members (Yadav et al.,
2016). To these ends, algorithmic models of information diffusion, most
notably the Independent Cascade Model (ICM) (Goldenberg et al.,
2001) and the Linear Threshold Model (LTM) (Granovetter, 1978), offer
the opportunity to approximate the structure of the diffusion process
and, in turn, the overall reach of the intervention contingent on the set
of peer leaders selected to seed the information propagation process.
Both models assume that diffusion unfolds iteratively, from activated to
unactivated nodes, along observed pathways (or edges) in the network
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(Guille et al., 2013). In cascade models, the node activation rule is
based on independent edge-wise decisions, while threshold models
posit cumulative effects on nodes, which lead to activation once a
personal threshold is exceeded (Kempe et al., 2003).

Although the ICM and LTM were initially developed to describe
social influence in natural settings where actors physically interact with
one another, their most typical applications tend to make assumptions
about social network topology that are difficult to generalize to physical
diffusion settings (Hu et al., 2017). Specifically, most applications tend
to assume that the underlying network is closed (i.e., information only
spreads among observed network members and along observed edges),
is monoplex (i.e., consisting of only one mode of social interaction be-
tween network members), and is static (i.e., the network remains un-
changed over time) (Guille et al., 2013; Zhong et al., 2017). Although
starting premises like these may be reasonable for modeling the spread
of information in well-defined online networks with real-time digital
trace data, they seem overly constrained and unrealistic for modeling
information propagation in real-world physical social settings that are
more porous and dynamic (Guille et al., 2013). The implication is that
the ICM and LTM, with their strong assumptions about network to-
pology, are potentially more prone to error and inaccuracy in their
predictions of information spread (Butts, 2003).

The limitations of these assumptions come into sharper focus when
contemplating the peer networks of homeless youth. First, from a
sampling perspective, homeless youth are considered a “hidden” or
“hard to reach” population, meaning that 1) there exists no sampling
frame, leaving the size and boundaries of the population unknown to
researchers, and 2) membership entails privacy concerns due to stig-
matized and/or illegal behavior (Heckathorn, 1997), leading to refusals
to participate in studies that would identify them as homeless. As such,
a complete network of who knows whom among homeless youth is
difficult to capture. Whatever snapshot of the network is captured for
the purposes of a peer-led intervention will likely not include every
homeless youth who could possibly be exposed to the intervention or
who could be considered a viable network influencer. The implication is
that, with the underlying network artificially bounded as it is, “ex-
ternalities” (e.g., unobserved nodes and edges) will always influence
the information propagation process in this population.

Second, in the real world, individuals often have network members
with overlapping roles and, therefore, have the opportunity to interact
with their peers in multiple social contexts, for example as neighbors
and as members of the same extracurricular club. We call this phe-
nomena network multiplexity. Homeless youth are no different; the same
peer can play the role of friend, drug partner, and sex partner (De la
Haye et al., 2012). Thus, information can feasibly travel between peers
in any of these social circles. However, models like the ICM and LTM
were not originally developed to combine relational inputs from mul-
tiple social contexts (Brummitt et al., 2012; Zhong et al., 2017). Fur-
thermore, network intervention studies rarely attempt to intervene on
more than one type of peer relationship, leaving alternative social
pathways of diffusion unobserved.

Finally, although the peer networks of homeless youth tend to be
smaller than those of stably housed youth (Falci et al., 2011), the re-
lationships they do have, especially those with other homeless youth,
are often tenuous and transient (Usborne et al., 2009). Regardless of the
degree of social or emotional support that youth receive from their
homeless peers, there are a number of situational and behavioral rea-
sons for why their peer relationships lack stability. For example, time
spent in homelessness (Falci et al., 2011), mental illness and substance
use (Hawkins and Abrams, 2007), transitions in and out of different
living situations (e.g., shelters, on the street, friends, transitional
housing, etc.) (Sutherland, 2016), and inconsistent or limited access to
the Internet and other communication technologies (Barman-Adhikari
et al., 2016) are all impediments to maintaining stable relationships for
homeless youth. Moreover, in a network intervention setting, the net-
works of homeless youth may actually expand over time, as these

interventions encourage peer leaders to seek out opportunities to talk
with homeless youth they may not otherwise know.

Given these network features, it is evident that models of informa-
tion diffusion are needed that draw from more realistic assumptions
about where and how information flows in networks of “hard to reach”
populations like homeless youth. To these ends, research has been di-
rected toward augmenting diffusion model algorithms to account for
more realistic network diffusion conditions. For example, efforts have
been made to incorporate link prediction techniques into ICM-based
influence maximization algorithms (Yadav et al., 2016), to para-
meterize the effects of multiplex ties (Brummitt et al., 2012; Gui et al.,
2014; Yağan and Gligor, 2012; Zhong et al., 2017) and to account for
evolving networks (Gayraud et al., 2015; Lahiri et al., 2008).

Meanwhile, others have developed altogether new models of dif-
fusion based on a more relaxed set of graph assumptions. The recent
work of Hu et al. (2017) presented the Activation Jump Model (AJM),
which describes information diffusion from a multi-agent team per-
spective. The AJM differs from the leading cascade and threshold
models in two key ways: 1) nodes exchange information beyond their
immediate social ties (i.e., off edge), and 2) seed nodes (i.e., individuals
chosen as peer leaders in a peer-led network intervention) act as a
multi-agent team to spread information, where their overall influencing
efficacy is a function of both individual and team attributes. Unlike the
ICM and LTM, the AJM does not rely on strong tie assumptions, and
instead is driven by activating the so-called ‘Breakfast Club’, where
individuals from different social contexts form a united team to diffuse
information. Using data collected from a pilot study on the spread of
HIV prevention awareness in the networks of homeless youth, the AJM
was shown to outperform the ICM and LTM in its fit to observed node-
level influence data (Hu et al., 2017).

In this paper, we present an alternative approach to address the
realities of information diffusion in real-world physical settings. Rather
than augment the cascade and threshold algorithms or develop new
ones altogether, we approach the problem as a data challenge. Drawing
from data collected from a peer-led HIV prevention network interven-
tion for homeless youth, we begin with a replication of Hu et al.’s
(2017) study design, comparing the performances of the cascade (ICM),
threshold (LTM), and activation jump (AJM) models in predicting node-
level influence in a monoplex cross-sectional network among study
participants. Here, network edges represent who knows and commu-
nicates with whom at the onset of the intervention. We consider this the
baseline analysis, as it reflects the status quo approach that makes no
revisions to the underlying graph. Then, we compare each diffusion
model’s performance as the underlying graph is manipulated with ob-
served data in three ways. First, to see how each information diffusion
model performs when the assumption of closed networks is relaxed, we
introduce observed ties to third party (i.e., non-participant) alters to the
baseline monoplex network described above. Second, to address the
possibility that another type of relationship serves as the setting for
diffusion among homeless youth, we generate two additional networks:
one represents their close friendships, and the other their joint parti-
cipation in youth center programs. Third, to attend to the issue of
network dynamism, we combine observed interactions at three time
points to create a single meta-network for each of the three relational
contexts. Although these data manipulations are incremental, we an-
ticipate that they will yield insights about information diffusion in the
real-world physical networks of homeless youth and will help inform
the use of these models to plan for and evaluate more impactful social
network interventions in similar communities.

2. Methods

2.1. The network intervention

2.1.1. Research design and sampling
Have You Heard? (HYH) is a 12-week behavioral intervention that
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focuses on peer-led HIV prevention among homeless youth (Rice et al.,
2018). Since homeless youth can be difficult to identify and engage
with, the intervention is designed to be delivered in homeless youth
drop-in centers, safe havens where homeless youth access food,
clothing, and case management services like employment training,
housing assistance, and health care referrals (De Rosa et al., 1999).
Thus, each deployment of the intervention targets a network of
homeless youth who access services from the same drop-in center. All
data collection and study procedures implicated in this study received
ethics approval from the University of Southern California Institutional
Review Board (IRB).

In this study, data are acquired from the deployment of the HYH
intervention in a drop-in center located in Los Angeles, California, USA.
All youth receiving services at the drop-in center were eligible to par-
ticipate and were informed of the study as they entered the drop-in
center. In total, 72 youth between the ages of 16 and 25 were suc-
cessfully recruited and enrolled. All participants provided written
consent at the time of enrollment, including minors. A waiver of par-
ental consent was obtained from the IRB for participants under the age
of 18.

2.1.2. Peer leader selection
Social network data collected from participants were used as the

basis for selecting peer leaders. Once enrolled, all participants were
asked to indicate which youth at the drop-in center (including both
study participants and non-participants) they knew and interacted with.
Using an algorithm called DOSIM, which optimizes network-based in-
tervention strategies for health providers by assuming a model of in-
formation spread based on a generalization of the Independent Cascade
(Yadav et al., 2018), a total of 12 peer leaders were selected from this
network. Theoretically, these are the individuals who are best situated
in the network to maximize influence in the network.

2.1.3. Intervention design and delivery
The primary intervention training consisted of a 4 -hour (one half-

day) small group workshop (up to 5 participants) that aimed to educate
peer leaders about sexual health risk reduction and promote their
personal development. This initial training was then supported by 7
weeks of 30-minute follow-up check-in sessions, which focused on po-
sitive reinforcement of peer leaders’ successes in engaging peers in HIV
prevention conversations, problem-solving strategies to improve future
conversations, and setting goals for the week with respect to peer-to-
peer conversations about HIV prevention. Because of the transience of
this youth population, the check-in schedule was flexible, and peer
leaders could check in individually with the facilitator via phone or
text. All peer leaders checked in at least once; modal attendance was
five sessions (Rice et al., 2018). Peer leaders were compensated $60 for
attending the initial training and an additional $20 for each follow-up
check-in session they attended.

2.1.4. Assessment
All participants including peer leaders were assessed at three time

points: a baseline interview; a 1-month follow up administered im-
mediately after peer leaders were trained and deployed; and a final
follow-up interview 3 months after baseline. Participants received a
$25 monetary incentive for each assessment they completed.
Assessments were computer-based self-administered surveys: baseline
(n=72), 1-month (n= 50), and 3-months (n=42). Survey items fo-
cused on demographics, access to health care, sexual health history, sex
behaviors, knowledge about HIV and other sexually transmitted infec-
tions, and their drop-in center engagement. Participants were also
asked questions about features of their personal networks and their
interactions with designated peer leaders.

2.1.5. The outcome measure
Given what peer leaders were trained to do (i.e., to have

conversations about HIV prevention strategies with their peers), our
evaluation of the intervention’s impact focused on the extent to which
HIV-related information was received by study participants from peer
leaders. In the absence of a viable method for empirically tracing paths
of information propagation as they occur in real-time in a physical-
world environment, we draw on the participants’ self-reports of having
had an HIV-related conversation with a peer leader. Specifically, in the
1-month and 3-month follow-up assessments, participants were asked
to indicate whether or not they had a conversation about HIV with a
peer leader since the last assessment. In our analysis, we treat this
confirmation as an instance of information propagation, although we
remain agnostic to whether that confirmation was reported at the 1-
month or 3-month follow-up. On a more substantive level, these con-
versations were expected to translate into shared information about
topics like HIV and STD testing (e.g., the importance of testing, where
they can go to get tested), condom use, modalities of contraception, and
the HIV prevention pill PrEP (e.g., what it is, how it works).

We acknowledge that this measure of information propagation is
imperfect, as it only captures primary diffusion moments between peer
leaders and study participants, leaving secondary moments of diffusion
between study participants unaddressed. That being said, we know
from exploratory analysis not shown here that study participants who
reported a conversation with a peer leaders, subsequently reported
having conversations about HIV and STD testing, condoms, and the HIV
prevention pill PrEP with more of their close friends (see section 2.2.2
for description of close friendships) than participants who did not re-
port having a conversation with a peer leader. Thus, there is reason to
believe that being on the receiving end of the first wave of diffusion is
associated with being on the propagating end of a subsequent wave.

2.1.6. Ethical considerations
Although there are no formal guidelines for the ethical conduct of

research with homeless youth in particular, we drew on established
legal and ethical guidelines for conducting research with adolescents
and vulnerable populations in general. Three ethical issues that
emerged in this study included questions about research consent, re-
search incentives, and handling adverse events. In the case of consent,
all participants provided written consent, including minors for whom
we obtained a waiver of parental consent from the IRB. With respect to
incentives, the authors’ prior experiences working with young people
experiencing poverty and/or housing instability informed our belief
that reasonable (but not too high to be coercive) monetary incentives
would be more effective for increasing retention and would be con-
sidered more straightforward to use than gift cards or vouchers. Finally,
homeless youth are particularly susceptible to certain adverse events
that may occur during the intervention, for example expressions during
staff interviews of suicidal intentions or of physical abuse. To ensure
participants’ safety and well-being, an emergency protocol was devel-
oped for handling these events, including reporting procedures and
quarterly staff training workshops.

2.2. Network generation

We modeled the propagation of HIV-related information in three
distinct social networks among the homeless youth in our sample. In
what follows, we describe how we derived these networks using data
collected from each participant.

2.2.1. General social network
A General Social Network was generated at each time point by

asking participants to name the other youth at the drop-in center that
they know and communicate with. Names were generated using free
recall responses and could include both study participants and non-
participants. Two versions of this network were generated and used in
our analysis. The first version is a network comprised of study partici-
pants only, which we take as our launch point and naive comparator for
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much of the data augmentation experiment. The second version of this
network includes ties to third party (i.e., non-participant) alters, which
we introduce in the first stage of our experiment.

2.2.2. Close friendship network
The Close Friendship Network is a conglomeration of participants’

egocentric networks of people they feel close to. In each survey as-
sessment, participants were asked to name up to 5 close friends, defined
as the people in their lives that they feel closest to and talk to most
frequently. Participants were permitted to name family or friends they
knew from home as well as other people they met on the street, in-
cluding the other youth in the study. Although participants were per-
mitted to name third party alters as they were for the General Social
Network, the incredible variability in who those third party alters were
for each participant made it impossible to match the third party alters
across egos. For this reason, we opted to restrict each egocentric net-
work to include only observed close friendship ties to other study
participants and, then, matched participant alters across egos to create
a single sociocentric network.

2.2.3. Program affiliation network
The Program Affiliation Network was generated from program

participation data. Self-reports of each participant’s engagement in nine
drop-in center activities yielded a two-mode network of homeless youth
and programs with ties between them representing program partici-
pation. Across the nine programs, the number of study participants who
attended a program ranged from 7 to 34 with an average of 18.2 study
participants per program. Among the 58 (of 72) study participants who
took part in at least one program, the number of programs they parti-
cipated in ranged from 1 to 8 with an average of 2.83 programs per
person. Analysis is performed on a transformation of this two-mode
network, which converts its two-mode structure into a one-mode di-
chotomized network of study participants whose ties to one another
represent joint participation in at least one drop-in center program.

2.2.4. Temporal aggregations
We account for the temporal aspects of each of the three network

contexts by collapsing observed ties over time into three meta-net-
works. We take this approach, as opposed to treating temporality as
dynamic change for the following reason. The way in which ties in the
General Social Network and Close Friend Network were ascertained —
i.e., through free response and a five-person name generator, respec-
tively — means that any observed changes in these networks could in
fact be a product of the inherent biases of these network generation
techniques. Name generation techniques that rely on a respondent’s
self-reports often result in significant under-reporting of relevant con-
tacts (Brewer, 1993), due to recall biases related to forgetting (Brewer
et al., 1999), respondent fatigue (Krosnick, 1991), satisficing (Dillman
et al., 2002), and alter anonymity, as might be the case when enu-
merating contacts among homeless youth who may have tenuous re-
lations with one another. Consequently, it may be misleading to classify
a missing connection at one time-point as truly absent and, therefore, as
an improbable path of information flow in edgewise diffusion models
like ICM and LTM. For example, individuals may provide information
on salient contacts in a follow-up assessment that were simply forgotten
or omitted for other reasons in a prior wave.

For this reason, we examine the effect of combining observed ties at
three time points, separated by relatively brief spans of time, in the
hope that such an analysis will provide a more complete approximation
of network ties that present plausible pathways of diffusion at any given
time during the intervention. Specifically, we created two additional
meta-networks for each network context, one representing the union of
ties observed at baseline and 1-month and the other representing the
union of ties at baseline, 1-month, and 3-months. This yielded three
networks in total for each network context, where ties in each network
represented a general, close friendship, or program affiliation

relationship observed at: (1) baseline only, (2) baseline or 1-month, and
(3) baseline or 1-month or 3-months. With these versions of each net-
work, we compare model performance on our temporally aggregated
networks to the performance on the non-aggregated baseline network
to determine which approach provides greater predictive power.

2.3. Model specifications

2.3.1. Independent cascade model (ICM)
In the ICM, an initial set S of active (or ‘seed’) nodes v is established

and the process of diffusion unfolds in discrete steps according to a
randomized rule (Kempe et al., 2003). Nodes u that are active in step t
are given a single chance to activate each currently inactive neighbor w
according to independent probability p, which can be chosen upon
model initialization. Any nodes lacking a path to a seed (i.e. isolated
nodes) have a zero probability of being informed. If w has multiple
newly activated neighbors, their attempts occur in random order.
Whether or not u succeeds in activating w, it cannot attempt to activate
w in subsequent rounds. This process runs until no more activations are
possible in the network.

2.3.2. Linear threshold model (LTM)
In the LTM, all nodes u are assigned a random threshold θw from a

uniform distribution U [0–1], and an initial set of seed nodes S is es-
tablished. A node u is influenced by each of its neighbors v, such that
each edge (u v, ) is assigned a weight =bu v

w
v, deg( ) , where we randomly

vary w up to the total number of neighbors for each given node. A node
u can only become active once a certain fraction of its neighbors is
active (i.e. b θu v w, ). Take this example: if an individual has connections
to 10 others in the network, and it is randomly assigned a threshold
θw =0.2, that individual’s randomly assigned w value must be greater
or equal to 2 for it to be activated.

The diffusion process in the LTM unfolds deterministically in dis-
crete steps, such that in step t , all nodes that were active in step −t 1
remain active and act to influence their neighbors (Kempe et al., 2003).
The process runs until no more activations are possible in the network.
Similar to the ICM, nodes without a path to a seed have a zero prob-
ability of being informed under the LTM.

2.3.3. Activation jump model (AJM)
In contrast to the ICM and LTM, the AJM features two character-

istics that are aligned with real-world information diffusion. First, in-
formation flow is not constrained to the edges within a network: nodes
can ‘jump’ outside of their immediate social neighborhood to contact
and propagate information to other nodes. Second, information is
spread through nodes banding together to act as a multi-agent team,
regardless of their social contexts, such that both individual and team
attributes influence the diffusion efficacy.

In order to reflect the heterogeneous social disposition of active
nodes, the AJM differentially models each influencer’s jump position.
While we do not replicate the full mathematical details of the AJM here,
we refer the reader to Hu et al.’s (2017) paper, which presents the
complete generalized and specific forms of the model.

In brief, a seed node’s jump activity occurs in two stages. The first
‘activation’ stage determines the number of other nodes a seed node
will attempt to influence during the diffusion period. In this stage, each
node in the seed set ∈v S is initialized by

drawing an activation level Av from a parameterized distribution
=A v S( , ) with mean =μ h S a x( )[ ]v

T
v , where xv is the node’s attribute

vector with coefficients aT . The maximum activation level of the node is
represented by a xT

v, which is modulated by ≤h S( ) 1, a term that de-
scribes the activation level of the team as a function of the structural
positions of all nodes in S. In the specific form of the model, h captures
the negative effect of social homogeneity (or structural equivalence)
among the seed nodes on a team’s effectiveness (Hu et al., 2017).
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Including the h parameter essentially ensures that high-degree nodes
are more active in spreading influence, as long as they are part of a
structurally diverse team.

In the second ‘jump’ or ‘deployment’ stage, the seed set is deployed
in the network and the social influence process unfolds over time. This
is largely controlled by a landing distribution Lv T, , a probability dis-
tribution expressing to which inactive nodes a particular activated node
will jump. The landing probability is a function of the structural attri-
butes of the influencing seed v and particularly targeted node u, such
that =Lv T d v u,

1
( , ) , where d v u( , ) is the path-length distance between the

two nodes. The jump stage occurs over the time interval [0, 1], whereby
each seed node v draws a series of jump times …t tv

A
v

1 v from a uniform
distribution over the time interval. At each jump time ti

v, v selects a
target node u drawn from Lv T, , where T is the set of uninformed nodes
at time t . Target node u is successfully influenced with probability p,
which can be changed in the AJM much like in the ICM.

Together, the two main stages of the AJM describe how often and to
whom an influencing node exchanges information as it moves through
the network.

2.3.4. Parameter settings
We set most model parameters equally across all networks, based on

standard values used by Hu et al. (2017) for similar experiments. Pro-
pagation probabilities p were always set to 0.1 in the ICM and AJM, and
edge weights were set to 100 in the LTM. We conducted preliminary
sensitivity testing by varying ICM and AJM’s propagation probabilities
between 0.1 and 0.9, and LTM’s edge weights between 10 and 1000. We
found no significant differences in the magnitude of total influence
spread under these various conditions, so adopted Hu et al.’s (2017)
original values for the sake of continuity and comparability. Following
Hu et al. (2017), an additional small constant, ∅ v u( , ) =0.1, was set in
the landing distribution score to account for cases where there is no
path between two nodes. This ensures that a ‘jump’ can occur between
two nodes even when there is no direct path between them.

For AJM, we calculated the value for h (the term describing the
negative effect of social homogeneity (or structural equivalence) on a
team’s effectiveness, which ranges from 0 to 1) separately for each of
the three networks and the three time periods. This is because h is re-
quired as a specific input when running the AJM model for each net-
work. In the authors’ publicly available code, h is calculated in a
module outside the main AJM model, by mapping the exact overlaps
between the social networks of different Peer Leaders. This provides a
mathematical representation of structural equivalency in the network,
ranging from 0 (low equivalency) to 1 (high equivalency). In our ex-
periments, h ranged between 0.83 (for the General Social Network at
baseline) and 0.94 (for the Close Friend Network at baseline), which is
very similar to the h values reported by Hu et al. (2017).

Code for ICM, LTM, and AJM models is available in open-source
format on Github, at https://github.com/jeromemayaud/
SocialNetworkInformationSpread.

2.4. Measure of model performance

A common method for determining the performance of diffusion
models is to compare the magnitude of total influence spread in si-
mulations to empirical observations – for instance, by minimizing root-
mean square error (RMSE) as a function of actual spread or re-
capitulating cascade sizes (Goyal et al., 2011). While such volume-
based metrics are unproblematic when one is agnostic about who in the
network is actually influenced, many applications require influence
maximization within specific subsets rather than the entire population
(Hu et al., 2017). We therefore performed a finer-grained analysis by
evaluating and comparing AJM, ICM and LTM predictions on node-
level influence using analysis methods commonly employed in the field
of machine learning.

Using the peer leaders from the field experiments as seed nodes, we
generated diffusion outcomes according to the AJM, ICM and LTM.
Each model was treated as a binary classifier that outputs the predicted
probability of each node becoming influenced. We ran each model 100
times per simulation to trace out Receiver Operating Characteristic
(ROC) curves, which plot a classifier’s True Positive Rate (TPR) against
its False Positive Rate (FPR). Along the curve, each point corresponds to
a predictive threshold such that all nodes with a probability of being
informed above (below) the threshold are classified as influenced (not
influenced). This methodology has previously been used to evaluate the
performance of information diffusion models (Goyal et al., 2011; Hu
et al., 2017; Wang et al., 2013) and has been shown to be more ap-
propriate for binary classification tasks than Precision-Recall curves
(Provost et al., 1998). The integrated area under each ROC curve
(AUROC, or AUC) provides an indication of classification performance
(Fawcett, 2006). An AUC value of 1 represents a perfect classifier and a
value of 0.5 represents a purely random classifier.

We are also interested in realistically capturing the network that
produces an accurate prediction of diffusion. Unfortunately, there are
no quantitative metrics that will allow us to directly compare the ac-
curacy of our network model dynamics with reality without a con-
siderable amount of additional data (such as on who spoke to whom
about the information, and at what time, their prior relationship, and
whether the information was understood). However, the AUC may also
serve as an indirect measure of this, as a more realistic model of dif-
fusion may be reasonably assumed to have higher predictive power
(and therefore higher AUC).

In order to capture the inherent variability between simulations, we
ran 10 simulations per network and per model, for which we calculated
individual ROC curves using the scikitlearn package in Python (v.3.4).
From these individual curves, we derived an average ROC by inter-
polating all curves over the full range of unique FPR values and cal-
culating the mean of all the TPRs for each FPR value. We also used the
scikitlearn package to calculate mean AUCs and associated standard
deviations. Each mean ROC and AUC value we present in our analysis is
thus calculated from a total of 1000 individual runs (10 simulations x
100 runs).

3. Results

3.1. Network descriptives

We first describe the structural features of each temporal combi-
nation of each social network context, including network size (i.e.,
number of network members excluding isolates), number of observed
edges, and density (i.e., the proportion of possible edges that are ac-
tually observed in the network) (Table 1). At baseline, the General
Social Network is comprised of 67 study participant network members
with 201 observed edges among them, corresponding to a network
density of 0.045. As new ties observed at 1-month and 3-months are
added to the baseline network, network size remains about the same
(n= 68) while the number of observed edges among network members
increases to 385, corresponding to a network density of 0.085.

In the baseline Close Friend Network observed among study parti-
cipants, there are 63 study participant network members, with 144
observed edges among them. This corresponds to an average of 2.3
close friend ties per participant and an overall network density of
0.037. When new close friend ties captured at 1-month and 3-months
are both added to the baseline network, the number of observed edges
increases to 230, which corresponds to an average of 3.4 close friend-
ship ties per participant and an overall network density of 0.052.

Finally, the baseline Program Affiliation Network has 58 study
participant network members who are connected to one another via
1962 observed joint-program participation ties, which corresponds to
an average of 33.8 joint-program participation ties per participant and a
network density of 0.593. As new program affiliation ties are added to
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the baseline network, the number of observed joint-program partici-
pation ties increases to 2,963, corresponding to an average of 43.6
joint-program participation ties per participant and a network density
of 0.650.

Given these structural dynamics, the main feature that distinguishes
the General, Close Friend, and Program Affiliation networks (irrespec-
tive of their temporal layering) is density. Specifically, with a baseline
density of 0.593, the Program Affiliation Network is about 13 and 16
times denser than the baseline General and Close Friend networks, re-
spectively.

We also note that new relationships are being formed throughout
the intervention period, as evidenced by the increase in observed edges
when new relationships observed at 1-month and 3-month follow-ups
are added to those that already exist at baseline. The contribution of
these newly added ties to the baseline structure of each network is
shown in Fig. 1, with the newly added ties colored in blue.

Finally, the degree of overlap and distinction between each pair of
meta-networks is shown in Table 2. Although the Close Friend Network
is the sparsest (or least dense) of the three networks, it shares the most
dyads in common with the other networks. Specifically, 60 percent and
72 percent of the ties observed in the Close Friend meta-network are
also found in the General and Program Affiliation meta-networks, re-
spectively. In contrast, the Program Affiliation meta-network is the
most distinct as it has the greatest number of unique ties relative to the
General and Close Friend meta-networks.

3.2. Breakdown of model performance

We evaluate the overall performance of each model (ICM, LTM and
AJM) using Receiver Operating Characteristic (ROC) curves and the
corresponding Area Under Curve (AUC) metric. Here, we unpack these
performance metrics across each phase of the data augmentation ex-
periment.

3.2.1. Diffusion in the Baseline General Social Network (with and without
third party alters)

We begin by replicating Hu et al.’s (2017) initial study design,
comparing the performances of the cascade (ICM), threshold (LTM),
and activation jump (AJM) models in predicting node-level influence in
a monoplex cross-sectional network among study participants. Here,
the network we model is the baseline General Social Network, which
represents who knows and communicates with whom among study
participants at the onset of the intervention. As is shown in Fig. 2 (left
side), the performance of ICM, LTM, and AJM are all below 0.5, sug-
gesting each model performs worse than random under these condi-
tions. However, when we introduce observed ties to non-participant
homeless youth to the participant only baseline network (Fig. 2, right
side), the performance of AJM improves considerably, achieving better
than random results.

Understanding why AJM improves with the addition of third party
ties and not ICM and LTM requires some unpacking. Because we lacked
information about whether non-participants received information from
a peer leader, we chose to leave their information status unmodeled. In
the face of that, AJM’s off-edge jumping mechanism may have im-
proved its ability to predict which nodes received information precisely
because it was better able to “work around” ties (and, therefore, alters)
that presented ambiguity.

3.2.2. Diffusion in alternative relational contexts
Next, to determine whether there are alternative relational contexts

in which diffusion seems more plausible among study participants, we
introduced two new social networks — the Close Friend Network and
the Program Affiliation Network. As is shown in Fig. 3 (left column),
when modeling node-level influence in the baseline Close Friend Net-
work (Fig. 3b) and Program Affiliation Network (Fig. 3c), all the models
perform no better or worse than random, achieving only a marginalTa
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improvement over their ability to predict influence in the baseline
General Social Network (Fig. 3a). This suggests that neither alternative
relational context presents plausible pathways of influence when cap-
tured just at baseline.

3.2.3. Diffusion in multiple relational contexts with temporal aggregations
Finally, we examine what happens as additional information on

social networks is incorporated through time (i.e. from baseline to
follow-up at 3 months). As is shown in Fig. 3 (middle and right col-
umns), the performance of both ICM and LTM improve in the General
(Fig. 3a) and Close Friend (Fig. 3b) networks. This suggests that the
inclusion of temporal data may be providing an additional socially
valuable mechanism for information to diffuse through the networks.
However, ICM and LTM do not improve with temporal aggregation on
the Program Affiliation Network (Fig. 3c).

By contrast, there is no evidence that AJM improves with additional

time information on any of the three networks. This is perhaps to be
expected: since AJM relies on predicting random jumps to nodes to
infer diffusion on incomplete networks, making a network more com-
plete may paradoxically result in AJM’s generated jumps being less
useful (and maybe even counter-productive). The AJM performs less
well than the ICM and LTM when fed with General and Close Friend
network data but performs on par when fed with Program Affiliation
network data. Since the jumping mechanism captures ‘off-edge’ pro-
pagation, AJM’s improved performance with the Program Affiliation
Network may suggest that the direct affiliation ties registered in this
network are not plausible diffusion pathways. This allows AJM to jump

Fig. 1. Graph visualizations of the: General Social Network (top row), Close Friend Network (middle row), and Program Affiliation Network (bottom row). Each row
contains three visualizations representing ties observed at three moments in time: baselines ties only (left column), baseline ties+ newly formed ties at 1-month
(middle column), and baseline + 1-month+newly formed ties observed at 3-months (right column). The newly formed ties at 1-month and 3-month are shown in
blue. All networks at each time point show observed ties between homeless youth who were either study participants (shown in gray) or peer leaders (shown in
green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 2
Number and percentage (reported in parentheses) of overlapping and unique
dyads in the temporally aggregated General Social, Close Friend, and Program
Affiliation meta-networks when compared to every other meta-network. Note:
All comparisons are reported with respect to the meta-network specified in the
first column (e.g., first row shows number and proportion of overlapping and
unique dyads in the General Social Network when compared to the Close Friend
and Program Affiliation networks.).

Main network for
comparison

Number of matching node
pairs with main network

Number of unique node pairs
compared with main network

GSN CFN PAN GSN CFN PAN

General Social
(GSN)

136
(35 %)

256
(66 %)

249 (65
%)

129 (34
%)

Close Friend (CFN) 136
(59 %)

166
(72 %)

94 (41
%)

64 (28
%)

Program Affiliation
(PAN)

256
(9%)

166
(6%)

2707
(91 %)

2797
(94 %) Fig. 2. Mean area under ROC curve (AUC) values for simulations using the

three diffusion models (ICM, LTM and AJM) on the baseline General Social
Network comprised of study participants only and the baseline General Social
Network comprised of both study participants and non-participants. An AUC
value of 1 represents a perfect classifier and a value of 0.5 represents a purely
random classifier. The error bars represent the distance between one standard
deviation above and below the mean.

L.E. Young, et al. Social Networks 63 (2020) 112–121

118



more effectively between disconnected nodes in the network.

3.2.4. Diagnostics
To illustrate the dynamics of the false and true positives con-

tributing to the AUCs, we present the individual and average ROC
curves for model runs on the General Social Network, focusing on ICM
and AJM to highlight the models with the largest contrast (Fig. 4). The
curves were calculated using the scikitlearn package in Python, which
automatically determines the most optimal thresholds for each ROC,
and sometimes results in step-like behavior. The average curves do not
cross (0,0) and (1,1) on the graphs because they are calculated by
taking the mean across the full range of TPR values for each corre-
sponding FPR value. While the ROC curves from individual runs exhibit

considerable noisiness, the average curves for ICM (Fig. 4a) show that
adding information over time improves model performance. The curves
for AJM (Fig. 4b) display even more noisiness, owing to the probabil-
istic nature of the jumping mechanism, but do not show improvement
over time, reflecting the AUC trends in Fig. 3.

Finally, we examine whether denser networks result in better model
performance in general. We plot the relationships between network
density and AUC when the three models were run on the three networks
at Baseline+1M+3M (Fig. 5). We find effectively no relationship
between network density and model performance. Similar lack of cor-
relation was found for the Baseline and Baseline+1M data (not
shown).

4. Discussion and conclusions

Cascade and threshold models remain widely used in predicting
information propagation and influence maximization analyses due to
their versatility and simple node-to-node edgewise dynamics. However,
the assumptions about network topology built into most applications of
these models — i.e., that networks are closed, monoplex, and static —
may limit their ability to capture complexities in real-world diffusion
processes, such as changes in relationships over time and uncertainty in
network structure or node properties. The implication is that when
cascade and threshold models are applied with these naïve assumptions
about network topology, they are potentially more prone to error and
inaccuracy in their predictions of information spread (Butts, 2003; Hu
et al., 2017) in real-world settings.

While attempts have been made to address such deficiencies
through algorithmic improvements like allowing for random jumps in
the propagation process when the network structure is not completely
known (Hu et al., 2017) or layering networks to capture effects of

Fig. 3. Mean area under ROC curve (AUC) values for simulations using the
three models (ICM, LTM and AJM) at different intervention time periods,
grouped by network type. An AUC value of 1 represents a perfect classifier and
a value of 0.5 represents a purely random classifier. The error bars represent the
distance between one standard deviation above and below the mean.

Fig. 4. Receiver Operating Characteristic
(ROC) curves (false positive rate vs true posi-
tive rate), for two models run on the General
Social Network at the three time points: (a)
Independent Cascade Model (ICM), and (b)
Activation Jump Model (AJM). Curves for in-
dividual runs are shown as thin lines and
average curves are shown as thick lines.

Fig. 5. Relationships between network density and Area Under Curve (AUC),
when the three models (ICM, LTM and AJM) were run on the General Social,
Close Friend, and Program Affiliation networks at Baseline+1M+3M.
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different relational contexts (Gómez et al., 2013; Zhong et al., 2017),
perhaps augmentation of the data itself can help improve model per-
formance without any adjustment to the predictive algorithms. In-
vestigation of this approach may not only improve modeled outcomes,
but it may potentially inform data collection efforts to direct attention
to areas where additional information is most needed.

In this paper, we tested this data-driven approach for handling
network dynamism and relational multiplexity— two motifs we believe
to be both common and consequential in many real-world networks —
in the spread of HIV-related information in the networks of homeless
youth. Specifically, our goal was to see whether adding additional ties
observed at later time points and accounting for alternative social
contexts in which information might spread yielded improvements in
model performance.

Although the mean AUC values for most model runs were close to or
less than 0.5, suggesting predictive performance no better than random,
some noteworthy patterns do emerge. Our analysis confirms that ex-
isting models struggle when operating in real-world network condi-
tions, particularly with the challenge of unobserved edges. We found
that the Independent Cascade Model (ICM), Linear Threshold Model
(LTM), and the recently developed Activation Jump Model (AJM)
perform poorly when modeling diffusion among General Social ties,
Close Friend ties, and Program Affiliation ties at baseline, despite AJM’s
design to address unobserved links in the data. However, when we
additionally accounted for edges observed at one- and three-month
follow-ups, both ICM and LTM performed better, indicating that
missing edges may have driven their initial poor performance.
Meanwhile, AJM performance declined as newly formed ties were
added, as expected – its method of random jumps to account for un-
observed links would become less accurate as gaps in each of these
networks are filled in with edges from later time points. Fig. 4 de-
monstrates that this improved performance was not due to simply in-
creasing network density; there is little relationship between density
and performance when holding temporal information constant. This
suggests that, unlike adding random links to increase network density,
the additional one- and three-month relational information provided
information pertinent to the information spread process.

While it initially may seem odd that including links formed in the
future would improve prediction performance, this is not so strange on
second glance: links observed within a three-month window may pro-
vide a good proxy for social proximity between individuals. It is rea-
sonable to assume that the relationships confirmed at a given time point
do not completely capture all the links between individuals in the da-
taset, as survey respondents may neglect to include all social ties in
their responses or may speak to others in the community with whom
they would not consider themselves to have strong ties. The dataset also
omits third party individuals, who were named by multiple respondents
as homeless youth they know and talk to but who were not enrolled in
the study. Thus, our network likely has both missing links and nodes.
Knowledge that two respondents will confirm having a social connec-
tion within the next three months may be an indicator that they are
socially closer than if we knew they would not report any contact.
While this is a loose proxy at best, with this temporal information the
cascade and threshold models do seem to perform better than just
random jumps (AJM).

Our findings also underscore the importance of establishing which
types of relationships represent the most plausible pathways of influ-
ence, especially if edgewise propagation is assumed. Consider how ICM
and LTM perform when modeling diffusion in the Close Friendship
Network (Fig. 2). Although each model starts off at baseline performing
no better or worse than random, as close friend ties observed at later
time points are added to the network their performances improve,
suggesting that these are indeed viable pathways of information pro-
pagation. Compare that to ICM’s and LTM’s performance in the Pro-
gram Affiliation Network. Both models underperform, particularly as
additional affiliation ties are added to the network. From this, we

conclude that program affiliation ties are not probable pathways of
diffusion for homeless youth, and as more of these improbable ties are
added to the network, the edgewise diffusion models perform worse.
Alternatively, in the face of a network that presents implausible edge-
wise pathways of influence, a model like AJM which allows for off-edge
diffusion may be better equipped by default to predict who becomes
informed.

As such, results from our particular case study suggest that there is a
hierarchy of information that is most optimal for predicting diffusion. If
available, predictive models should ideally make use of information
about social links between individuals through time. The biggest gains
from such temporal aggregation occur when initial network densities
are low. However, if temporal data are not available, the use of situa-
tional network data such as PAN may result in predictions of diffusion
that are on par with, if not slightly better than predictions made using
the other more explicitly social networks at baseline (i.e., the General
and Close Friend networks). This may be attributable to the fact that at
baseline the Program Affiliation Network is more densely connected
and by chance accounts for many of the unobserved General and Close
Friend ties at baseline that were eventually confirmed at one- and three-
month follow-ups.

From a practical perspective, this is a noteworthy finding. Collecting
social network data in the field, as is done for most health behavior
interventions, is costly in terms of time and resources and is often prone
to the contingencies of imperfect data capture. Program affiliation
networks, on the other hand, can be built from participation records
that drop-in centers routinely maintain. As such, these data can typi-
cally be collected more rapidly and cheaply than traditional relational
data. Similar future studies may opt to rely on collecting situational
data to inform their selection of peer leaders as well as their approach
to the network intervention itself.

We recognize that this analysis has many limitations, and much
future work remains to be done. First, we assume that it is reasonable to
combine edges from multiple cross-sections of time into single meta-
networks without information on when these edges were actually es-
tablished (or confirmed by the respondent). In future work, we hope to
develop algorithms that can integrate link prediction to account for
unobserved addition and dissolution of edges and nodes over time, to
extend existing dynamic network models (Yadav et al., 2018). Ex-
planatory models like Stochastic Actor-oriented Models (SAOMs) (e.g.,
as implemented in RSiena) also hold great promise, as they could be
used to identify a wider array of propagation mechanisms that include
both structural features of networks (and their dynamics) as well as
external influences like the attributes of network actors. Second, al-
though we examine three different relationships that exist among the
homeless youth in our sample, we do not account for true network
multiplexity in our models. In future work, the effects of multiplex re-
lationships on information diffusion could be modeled by introducing
simple edge weights to represent the number of different types of re-
lationships between two actors or by explicitly modeling each re-
lationship type as a unique layer in a multiplex network diffusion model
(Zhong et al., 2017). Finally, by exclusively sampling youth from a
single drop-in center environment, we risk over-representing the role of
center-based networks in the information diffusion process. Although
this was inevitable given that the target audience for the Have You
Heard? intervention was drop-in center patrons, we acknowledge that
our approach ignores relationships that exist outside the center that
may play a critical role in the diffusion of HIV-related information.

In general, we believe that our findings call for greater emphasis on
using real-world physical network data to test and verify assumptions
built into predictive models of diffusion. This process not only identifies
the difficulty of modeling realistic network dynamics, but also em-
phasizes the challenge inherent in modeling noisy, incomplete network
data that needs to be met before such models can be confidently used
for informing policy. We hope that with greater usage of real-world
data, we can identify more heterogeneous mechanisms of diffusion and
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develop a more sophisticated and informed understanding of the factors
that will increase the effectiveness of peer-led social network inter-
ventions in vulnerable communities at-risk for HIV and other health
risk outcomes.
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